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ABSTRACT 

We study some combinatorial principles intermediate between square 
and weak square. We construct models which distinguish various square 
principles, and show that a strengthened form of weak square holds in 
the Prikry model. Jensen proved that a large cardinal property slightly 
stronger than 1-extendibility is incompatible with square; we prove this 
is close to optimal by showing that 1-extendibility is compatible with 
square. 

1. I n t r o d u c t i o n  

Several  lines of research mot iva te  the  resul ts  in this  paper .  W h a t  the  lines have in 

common  is Jensen ' s  ce lebra ted  combina to r ia l  pr inciple  [3~, which is p ronounced  

"square kappa" .  

Det~nition 1.1 (Jensen [12]): Let  n be an infinite cardinal .  A sequence 

(Ca:  (~ < t~ +) is called a [ 3 , - s e q u e n c e  iff whenever  /3 is a l imi t  o rd ina l  and  

t ~ < f l < ~  +, 

(1) C~ is a closed unbounded  subset  of/3, 

(2) C;~ has order  type  at  most  ~, and  

(3) if c~ is a l imit  poin t  of C z, then  Ca = CZ A a .  
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We say that []~ holds  iff there exists a [3~-sequence. 

If fl is a limit ordinal between n and n+, then clearly there exists a closed 

unbounded C C_ /~ with ot(C) <_ n. What gives [3~ strength is the last clause 

in the definition, which is commonly referred to as c o h e re n c e .  Although []~ 

is a technical principle, it has turned out to be one of the most important links 

between diverse parts of set theory. 

A major theme in set theory is the tension between "compactness" and 

"incompactness". Examples of the kind of compactness phenomena we have 

in mind include stationary reflection (qv), the tree property, Shelah's singular 

compactness theorem, or Silver's theorem that GCH does not first fail at a sin- 

gular cardinal of uncountable cofinality; some examples of incompactness are 

non-reflecting stationary sets, Aronszajn trees, or Magidor's theorem that GCH 

can fail first at ~ .  As we see shortly square and related principles are gener- 

ally on the incompactness side, and can be used as a measure of the extent of 

compactness in the universe of set theory. 

The following results are due to Jensen, and indicate some of the power of 

square principles. Let ~ be a singular strong limit cardinal; then [3~ implies that 

(1) there exists a special ~+-Aronszajn tree, 

(2) under GCH, there exists a n+-Souslin tree, and 

(3) under GCH, for every structure 92 of type (R1, l~0) there exists a structure 

of type (t~ +, ~) such that 91 - ~ .  

We recall that a stationary subset S of a regular cardinal A is said to re f lec t  

if there is c~ < A of uncountable cofinality such that S A a is stationary. Solovay 

showed that if [3~ holds, then every stationary subset of t~ + contains a non- 

reflecting stationary set. He also showed that if ~ is n+-strongly compact, then 

every stationary subset of the set ~+ N cof(< ~) reflects, so that [3~ fails. This is 

a typical example of the kind of tension between compactness and incompactness 

which we discussed above. 

Another point of departure for the work in this paper was the results of Cum- 

mings, Foreman and Magidor [5] on the relationship between square principles, 

stationary reflection and PCF theory. That  paper uses ideas from PCF theory 

(in particular the concept of a "very good scale" as discussed in Section 2) to 

clarify the relationship between squares and reflection. Several of our results are 

directly motivated by the results of [5]. 

It is natural to ask when D~ holds. Jensen showed that in L the principle 

[3~ holds for all cardinals n. On the other hand, the consistency strength of the 

failure of [3~ is strictly greater than that of ZFC. For example, the theory ZFC 
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+ VI~ 1 fails is equiconsistent with ZFC + there exists a Mahlo cardinal; the lower 

bound is by Jensen and uses L, while the upper bound is a forcing argument 

by Solovay that  uses the Levy algebra. More generally, the failure of [i]. with 

regular is well-understood. There is a serious gap, however, in our understanding 

of the case in which ~ is singular: roughly, there are upper bounds of about one 

supercompact cardinal, and lower bounds of many Woodin cardinals. This leads 

us to the second point of departure for [5] and us too, namely inner model theory. 

The main technique for proving lower bounds on the failure of VI~ for g singu- 

lar involves generalizations of Jensen's theorem that [-1. holds in L for all infinite 

cardinals ~, and Jensen's Covering Theorem [6], which implies that  if 0 # does not 

exist then (~+)L = g+ for all V-singular cardinals g. An immediate consequence 

of these results is that if 0 # does not exist and g is a singular cardinal, then [-1~ 

holds. We note that this helps to explain a well-known phenomenon in combina- 

torial set theory; if g is singular then it is typically hard to build models without 

"incompact" objects of size ~+, such as a+-Aronszajn trees [18] or non-reflecting 

stationary sets [16]. 

However, this sort of covering fails for L if 0 # exists, so other models must 

be used. The kind of transitive proper class models to which Jensen's theorems 

have been generalized are known as core  models .  In his early at tempts in this 

direction, Schimmerling introduced the following hierarchy of weakenings of D. .  

Detinition 1.2 (Schimmerling [20]): Let ~ be an infinite cardinal and let ~ be 

a cardinal such that 1 < ,~ < ~+. A sequence of sets (Ca: c~ < ~+) is called a 

[-l~<a-sequenee iff whenever/3 is a limit ordinal and ~ < B < g+, then 

(1) 1 < IC~l < A and 

(2) for all C E C 9, 

(a) C is a closed unbounded subset of/3, 

(b) C has order type at most ~, and 

(c) if a is a limit point of C, then C A c~ E Ca. 

We say that ti/~ <~ holds iff there exists a []~<a-sequence. 

We write 1-12 for VI~ <a+. Clearly, VI~ is equivalent to [] . .  The principle [-1~ 

appears in the literature as []% or "weak square -kappa"; Jensen isolated D* 

roughly at the same time as [3., and showed that it holds if and only if there is a 

special g+-Aronszajn tree. It is worth noticing that if ~<" = ~ then by an easy 

argument I-7" holds, so that Vl% is of greatest interest when ~ is singular. 

As an example of how the [~2 hierarchy has been used, we review some results 

about forcing axioms and square principles. The Proper Forcing Axiom (PFA) 

and Martin's Maximum (MM) are strong versions of Martin's Axiom (MA) which 
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are consistent relative to a supercompact cardinal, and whose exact consistency 

strength is still unknown. 

Todorcevic [25] proved that  under PFA, O~ fails for all ~ > R1. Hence, by 

the results of Jensen mentioned earlier, PFA implies that  0 # exists. Magidor 

observed that  Todorcevic's proof actually shows that  PFA implies the failure of 

[3~ 1 for all n > ~1. Schimmerling used Magidor's observation together with 

the Mitchell Schimmerling-Steel Covering Theorem to prove that  one Woodin 

cardinal is a lower bound on the large cardinal consistency strength of PI=A (the 

absolute square principles (qv) from Section 3 played a role in the original version 

of this argument).  

We can use the [ ~  hierarchy to measure the combinatorial strength of a propo- 

sition P,  by computing the least A such that  P is consistent with D <~. Magidor 

showed that  PFA + [3~ 2 for aH n > t~2 is consistent relative to a supercompact 

cardinal, while by contrast MM is incompatible with C]* for any singular n of 

cofinality w; this is one measure of the gap in strength between these two ax- 

ioms. In a similar vein, in [5] the [3~ hierarchy is used to calibrate the strength 

of various stationary reflection principles (see the discussion in Section 2). An 

interesting open problem is to determine whether GCH + []~ suffices to con- 

struct an R~+l-Souslin tree; a straightforward adaptat ion of Jensen's arguments 

D <~ is sufficient. shows that  GCH + ~ 

As the authors were writing this paper, the story of [ ~  took an interesting 

turn. Schimmerling and Zeman proved that  in all core models 1 if n is not a 

subcompact cardinal, then VI~ holds. Subcompactness is a new large cardinal 

property that  was introduced by Jensen; subcompactness follows from super- 

compactness. Recall the fact due to Solovay that  was mentioned earlier: if n is 

n+-strongly compact,  then [3~ fails. Jensen observed that  subcompactness suf- 

fices in Solovay's theorem and hence the converse to the Schimmerling-Zeman 

theorem holds. Therefore in the relevant core models [ ~  holds iff n is not sub- 

compact.  The results in the last section of our paper were inspired by these new 

developments. 

We end this introduction with a summary  of our results. The sections can be 

read independently, though some of them use definitions from earlier sections. 

• In [5] it is shown that  certain forms of stationary reflection are consistent 

with forms of [2]~. In Section 2 we show that  these results are optimal in 

1 By core model  we mean any proper class model of the form L[/~] where t~ is a 
coherent sequence of extenders, subject to certain fine structural conditions. See 
[22] for a full explanation. 
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the sense that  A cannot be decreased. This is an example of the sort of 

calibration of combinatorial strength discussed above. 

• In Section 3, we define and study "indexed square" principles stronger 

than [ ~ .  The main new idea is that  the members of C~ are given indices 

up to A and we explore various forms of coherence along the indices. These 

combinatorial principles were originally motivated by core model theory. 

The main result is Theorem 3.1 which identifies a square principle with 

some strong upwards absoluteness properties. 

• In Section 4 we show that  if P is the Prikry forcing notion associated to 

a normal measure over ~, then [:]~o holds in V ~. The proof uses ideas 

from the results about absolute squares in Section 3 but is self-contained; 

the main technical point is that  given an inaccessible ~ we can construct 

a "good matrix",  which is (roughly speaking) a form of [:]*-sequence with 

additional coherence properties. We note that  by results from [5], if ~ is 

~+-supercompact then [:]<~o fails in V ~. 

• Jensen showed in unpublished work [11] that  E]s 1 is strictly stronger than 

[ ~ .  In Section 5 we use similar methods to compare these principles with 

some of the simplest of their "indexed" counterparts from Section 3. The 

upshot is that  the indexed []~-hierarchy is interleaved with the original one. 

• The results in Section 6 were obtained by the first author after he learned of 

the Schimmerling-Zeman result mentioned a few paragraphs above. Sub- 

compactness is a natural  strengthening of 1-extendibility, and so one would 

expect n being 1-extendible to be consistent with [ ~ .  Actually we prove 

something stronger but more technical to state: there is a transitive set W 

and a predicate C on W such that  (W, C, C) is a model of ZFC d + there 
is a 1-extendible cardinal -I- C is a global square sequence. Here ZFC C is the 

version of ZFC written in the language of set theory expanded by a predi- 

cate symbol for C, and "global square" is a class version of [] (introduced 

by Jensen) which implies that  [3~ holds for all ~; this result leaves open 

whether we can have a 1-extendible cardinal and a definable global square 

sequence. 

2. Stationary reflection 

In this section we make two observations on the relationship between the 

[3~ principles and stat ionary reflection. The following result was observed by 

Schimmerling and independently by Foreman and Magidor. 
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THEOREM 2.1: A s s u m e  that  ~<~ = n and [3 <~ holds. Le t  T C ~+ be stationary.  

Then  there exists S C_ T such that  S is s ta t ionary  and S does not  reflect at  any  

u < n + wi th  cf(u) > A. 

Proo~ Let (w i tnes s  []<a. Define F(u )  = {ot(C): C E g,} for all v E T, and 

find S C_ T stationary such that F is constant on S with value A. Assume S 

reflects to u, and choose C E C.. Now the function which takes p E lira(C) A S 

to ot(C f3 #) is an injection from lim(C)fq S to A. Since tim(C)M S is unbounded 

(indeed stationary) in u, we have 

cf(u) _< I lim(C) N S] < IAI < A. m 

In particular g] <~ implies that every stationary subset of ~+ has a non- 

reflecting stationary subset. 

Cummings, Foreman and Magidor [5] have made a systematic study of the 

connection between [q~ and other combinatorial principles. To set our second 

result in context we quote some theorems from [5]. 

FACT 2.2 ([5]): Let ~ be singular, and let [S]~ hold for some ~ < n. Then 

for every stationary T _C t~ + there exists (Si: i < cf(~)) such that each & is a 

stationary subset of T, and there is no u < n+ such that cf(u) > cf(n) and all 

the & reflect at u. 

The proof of Fact 2.2 falls into two parts; in the first part a principle VGS~ 

("Very Good Scale at t~") is derived from [3~, and in the second part the con- 

clusion of Fact 2.2 is derived from VGS~. One theme of [5] is that certain con- 

structions of incompact objects from square principles can be done using very 

good scales: Fact 2.2 is an example of this. The next result shows that I7" is not 

powerful enough to imply the conclusion of Fact 2.2. 

FACT 2.3 ([5]): If the existence of infinitely many supercompact cardinals is 

consistent, then it is consistent that 

(1) D ~  holds; 

(2) for all m, n with 1 < m < n < co, if (&: i < ~m) is a sequence of stationary 

subsets of {c~ < R~+I: cf(c~) < Rm} then there exists p < R~+I such that 

cf(v) = Rn and all the St reflect at u. 

On the other hand, Fact 2.2 cannot in general be strengthened to rule out 

simultaneous reflection of fewer than cf(n) many sets. 
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FACT 2.4 ([5]): If the existence of infinitely m a n y  supercompac t  cardinals is 

consistent,  then it is consistent tha t  

(1) [3 ~ holds; N~ 

(2) for every n < co, if (S{: i < n) is a sequence of s ta t ionary  subsets  of 11~+1 

then there exists M < co such tha t  for all m with M < rn < co there exists 

~' < R~+I such t ha t  cf(u) = ~,~ and all the Si reflect at  v. 

The  second theorem of this section shows tha t  Fact  2.3 is close to opt imal ,  

in t ha t  V1 <s~ is incompat ib le  with the conclusion. Before proving it we need a R,o 
technical l e m m a  (an easy generalisation of a well-known fact abou t  [3~). 

LEMMA 2.5: Let ~ be singular. If[B <x holds then there exists a D<X-sequence 

{ ~ :  c~ < n+}, with the additional property that a11 the dubs in U ~ / ) ~  are of 

order  type less than ~. 

Proo~ Fix D C_ ~ such tha t  D is closed and unbounded and o t (D)  = cf(n).  

Given C a club subset  of some a < ~+ with o t (C)  _< ~ we define C* _c C: 

• If  o t (C)  • l ira(D) or o t (C)  = ~ then  

C * = { 5 • C :  o t ( g N S ) • D } .  

• If  o t (C)  ~ l im(D),  then 

C* = {5 • C: o t ( C  N 6) > m a x ( o t ( C )  O l ira(D))}.  

I t  is easy to check tha t  C* is club in sup(C) ,  and tha t  if 3' • l im(C*) then 

C* n 7 = (C n T)*. Given a [ ]<<sequence  (C~: ct < ~+),  we set 

THEOREM 2.6: Assume that ~ is a singular strong limit cardinal, and let T be 

a stationary subset of n+. Suppose that [3< ~ holds. Then there is a sequence 

(Si: i < cf(~))  of stationary subsets of t~ and a cardinM # < ~; such that 

(1) Si C_ T N cof (<  #);  

(2) if u < ~+ is any point with cf(u) >_ #, then (Si: i < cf(n)} does not reflect 

simultaneously to v. 

Proof." We fix a [D~ <~ sequence C, and we assume (as we m a y  by L e m m a  2.5) 

tha t  all the club sets appear ing  in C have order type  less than  n. We also fix 

an increasing sequence (~i: i < cf(~)) of regular  cardinals cofinal in n, and a 

s t a t ionary  T C t~ +. Let T '  be a s t a t ionary  subset  of T oil which the functions 
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v ~-+ ]C.] and v ~-~ cf(v) are constant. Let i < cf(n) be large enough so that  both 

of these constant values are less than gi- For each v < n+ and j < cf(n), the set 

{ot(C): C e Cv} N nj 

is an element of V~. Since n is a strong limit cardinal, by Fodor's lemma there 

are sequences {Sj: j < cf(n)) and {dj: j < cf(n)) such that  for every j < cf(n), 

S 5 is a stat ionary subset of T ~ and for every v E Sj,  

Aj -- {or(C): C e g,} A ~j. 

Suppose that  ($5: j < cf(n)) reflects simultaneously to an ordinal v < ~+. Let 

C be any element of C.; by our assumptions on C we know that  ot(C) < g and 

so we may choose j < cf(n) large enough that  aj > ot(C). Then lim(C) N Sj 

has fewer than ni many elements. This is because, if #0 < #1 are both  elements 

of lira(C) (9 Sj, then o t (C • p0) and ot(C N Pl) are distinct elements of Aj, but 

[Ajl < ~i. Therefore cf(v) < ~i- | 

3. I n d e x e d  s q u a r e  p r i n c i p l e s  

In this section, we introduce several weak square principles that  were distilled 

from the core model combinatorics of [20] and [21]. Perhaps the most interesting 

of these principles is Slick [3~. Rather than give the definition of Slick [3* here, 

at the start  of this section, we will lead up to it in steps. However, to give the 

reader an idea of the goal, let us go ahead and state a corollary to what we are 

about  to do. 

THEOREM 3.1: Let V C W be transitive models of ZFC and ~ be a limit cardinal 
in W.  Suppose that (~+)v = (~+)w and Slick [ ~  holds in V. Then both Slick E]* 

and VI~ hold in W where A = cfW(n). 

Combinatorics similar to the proof of this theorem were used to obtain lower 

bounds on the consistency strength of PFA in [20]. Theorem 3.1 was the inspira- 

tion for the result in the next section that  Prikry forcing at a measurable cardinal 

adds a [::]~o sequence. 

Whacky [3~ is another principle that  we will define later in this section. On the 

* V1 , but there are cases surface, Whacky 13 seems like a slight improvement of <~ 

in which it does the work of D~ <a°. Again, we will state a result well in advance 

of giving the definitions. Combinatorics similar to the proof of Theorem 3.2 were 

used to obtain consistency strength lower bounds on stationary reflection in [20]. 
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THEOREM 3.2: Suppose that ~ is a strong limit cardinal and that the princi- 

ple Whacky I--1" holds. Then every stationary subset of ~+ has a non-reflecting 

stationary subset. 

To orient the reader we will fill in the missing definitions to make sense of the 

series of implications 

[~<~ ~ Index[3 <~ ~== Cardindex[3 <~ ~ Whacky[]~ 

from left to right, after which we will define Shck D~. 

Our first definition is that  of Index[3 <~, which strengthens [3 <~ by assigning 

ordinal indices from n + 1 to each club in each C~, and demanding that  initial 

segments of a club with a given index all get the same index. 

Definition 3.3: The pair (A, C) is said to w i t n e s s  t h a t  Index [2]<~ ho lds  iff A 

and C are functions such that  if v is a limit ordinal and ~ < v < ~+, then 

(1) A(p) is a non-empty subset of ~ + 1 of cardinality < A, and 

(2) if c~ e A(v), then 

(a) C( , ,  a) is a club subset of , ,  

(b) ot(C(u, a))  _< t~, and 

(c) if # E lim(C(u, a)) ,  then a E A(p) and C(u, a) n # = C(#, a). 

As one would expect, Index V] I means Index D <~+ . I t  might seem more natural  

to require A(~) C_ n in Definition 3.3; the value of allowing n as an index will be 

remarked on after Definition 3.4. In Section 5, we will prove that  indexing gives 

something new, namely that  Index ff]~l is strictly between [3~, and El2 in its 

strength. However, for the rest of this section, most of our results will be about 

the case in which n is a limit cardinal• 

The point of our next principle, Cardindex D <~ is to link information about 

the order type of a given club to its index. Of course, several ways of doing this 

are possible. Considerations tied to the core model combinatorics of [20] led to 

our choice of "a +' '  here, in a way that  we will not make precise. 

De~nition 3.4: We say that  (A, C) w i t n e s s e s  t h a t  CardindexE] <~ ho lds  iff 

(A, C) witnesses that  Index [3 <~ holds and for each limit ordinal ~ between 

and n +, 

(1) either d(u) C_ n and IC(u,a)l <_ a + for all c~ e d(u),  

(2) or A( , )  = {n}. 

Here are some remarks on the definition. 

• If  t~ is a successor cardinal and the principle Index[3 <~ holds, then the 

principle Cardindex [~<~+1 holds. 
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The  only point  of allowing n to be an index ( ra ther  than  requiring A(~,) _C 

in all cases) is to get a consistent principle when n is an inaccessible 

cardinal.  Note  tha t  if n is an inaccessible cardinal  and (A, C)  is a witness 

t ha t  Cardindex D2 holds, then  A(u) = {n} whenever el(u) = n. a l s o  note 

tha t  if # E lim(C(~,, n)), then  A(#) = {n}. 

Let  n be a singular cardinal  and A = el(n).  Suppose tha t  there exists a 

witness tha t  Cardindex [3~ holds. Then  there exists a witness (A, C) tha t  

Cardindex[-]2 holds such tha t  A(u) C_ ~ for all u. The  construct ion is as 

follows. Firs t  ar range t ha t  o t (C(u,  n)) < n whenever A(u) = {n} as in the 

proof  of L e m m a  2.5. Then  fix a sequence (hi: i < A} tha t  is increasing and 

unbounded in n. If  A(u) C_ n, then let B(u)  = A(~,) and D(u,  a )  = C(u, a). 
I f  A(u) = {n}, then let 

B ( . )  = < o t ( C ( , ,  < 

and D(u,  ni) = C(u ,n )  for ni E B(u) .  Then  (B,D) is a witness t ha t  

Cardindex[9~ holds and B(u)  C_ n for all u. 

We will prove Theo rem 3.2 after defining the principle W h a c k y [ ] * ,  which 

s t rengthens  Cardindex[:]  <~ by requiring, roughly, tha t  the set of indices for a 

given ordinal u be bounded  in n. 

Definition 3.5: We say tha t  (A, C) is a w i t n e s s  t h a t  Whaeky[:]~ h o l d s  iff 

(A, C) is a witness tha t  Ca rd index[ ]  <" holds and for every limit ordinal 

between a and t~ +, if A( , )  C_ ~, then sup(A(u))  < ~. 

We remark  tha t  if ~ is a regular cardinal,  then W h a c k y [ ] *  holds iff 

Cardindex [3~ <~ holds. 

P r o o f  of  Theorem 3.2: Say ~ is a s t rong limit cardinal  and (A, C) is a witness 

tha t  Whacky  [3* holds. Let S C_ ~+ be a s ta t ionary  set of limit ordinals. 

First  suppose t ha t  there exists a set S ~ c_ S tha t  is s ta t ionary  in ~ such t ha t  

A(u) = {t;} for all u E S ~. By Fodor 's  lemma,  there exists an ordinal  r _< n and 

a s ta t ionary  set S" C_ S' such tha t  o t (C(u,  n)) = ~- for all u E S". Consider an 

a rb i t r a ry  u. Let  ~ E A(u). Suppose tha t  tt E S"  ~ l im(C(u,  c~)). Then  c~ = ~, 

d( , )  = {n} and 

o r ( c ( . ,  n = ot(C( , = 

But  this can hold for a t  most  one p, so S"  does not reflect to u. 

Thus,  wi thout  loss of generali ty A(u) C_ ~ for all u E S. Then  

sup(A(~))  < t; 
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and 
sup({ot(C(u,a)): a E A(u)}) < sup({[C(~,~)[+:  c~ E A(v)})  

_< sup ({a++:  a E A(v)})  

for all u E S. Since ~ is a s t rong limit cardinal,  

( o t (C (u ,  a)) :  a E A(u))  E g ~  

for all u E S. By Fodor 's  l emma,  there is a s ta t ionary  S '  C_ S, a set B E H~ and 

a sequence of ordinals r = (r~: a E B) such tha t  

m(v) = B 

and 

( o t ( C ( v ,  a ) ) :  c~ E A ( u ) )  = r 

for all v E S ~. Consider an a rb i t ra ry  v. Let a E A(v). 
S' VI l im(C(u,  a ) ) .  Then  c~ E B = A(lt ) and 

o t ( C ( . ,  5) n = ot(C( , 5)) = 

This can hold for at  most  one #, therefore S ~ does not reflect to v. 

Suppose tha t  # E 

I 

Definition 3.6: We say tha t  (A, C) is a w i t n e s s  t h a t  Slick [2]~ h o l d s  iff A and 

C are functions such tha t  for all limit v with ~ < u < ~+, 

(1) ei ther 

(a) A(v) is a non-empty  closed subset  of g, and 

(b) if a E A(u),  then  

(i) C(v ,  c~) is a club subset  of u, 

(ii) o t ( C ( u , a ) )  <_ ~ and ]C(u,a)]  <_ a +, 

(iii) if # E l im(C(u,  a ) ) ,  then a E A(p)  and 

and 

(iv) if a < / 3  and/~  E A(u),  then  C(v, a)  C_ C(v,/3),  

(2) or else 

(a) A(v) = {~}, 

(b) C(v,  g) is a club subset  of u, 

(c) o t (C(v ,  ~)) _< ~, and 
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(d) if # • lim(C(u, n)), then A(#) = {n} and 

c ( v ,  n = c ( , ,  

A witness to Slick[:]~ need not be a witness to any of the other indexed 

square principles that we have defined, not even []*, because of the weaker 

coherence condition ("C_" instead of "=")  in clause l(b)(iii). In fact, the proof of 

Theorem 3.1 shows that if SlicklY* holds, then there exists a witness with the 

stronger form of coherence. On the other hand, we have added clause l(b)(iv), 

which is a different kind of coherence across indices. Another new feature is the 

requirement, clause l(a), that  A(u) be closed; note that A(u) is not required to 

be bounded or have small cardinality. 

Let us also remark that if n is a singular cardinal, then the second possibility in 

Definition 3.6 is not needed in the sense that Slick []* holds iff there is a witness 

(A, C) that Slick [9* holds such that A(u) c n for all u. The reason is just like 

that given in the third remark after Definition 3.4. 

Theorem 3.1 follows immediately from the following two lemmas, the first of 

which is obvious. 

LEMMA 3.7: Let V C_ W be transitive models of ZFC and ~ be a cardinal in W.  

Suppose that (~+)v = (t~+)w and 

V ~ (A, C) is a witness that Slick E3* holds. 

Then 

W ~ (A, C) is a witness that Slick 0*  holds. 

LEMMA 3.8: Suppose that n is a limit cardinal, A = cf(n), and there exists a 

witness that Slick [-]* holds. Then there exists a witness (A, C) that Slick ff]* 

holds such t h a t / f A ( u )  C n, then 

(1) IA(u)] < A, and 

(2) if  p e lim(C(u, c~)), then a e A(#) and C(u, ~ ) ~  # = C(#, a). 

In particular, ( A, C) is also a witness that Cardindex [5]~ holds. 

Proo£" Let (n~: i < A) be a strictly increasing continuous sequence of cardinals 

that is unbounded in n. Let (A, C) witness that  Slick O* holds. From this data, 

we will define a pair (A fat, C fat) satisfying the requirements of the lemma. The 

intuitive idea is to recursively "fatten up" each C(u, a)  for a < n. 
If A(u) --- {a}, then let Afa t (v )  : {t~} a n d  cfa t (v , / '~)  : cfat(v,t~). There is 

nothing to check in this case. 
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For the rest of the proof, we turn to the only other case, namely A(v) C n. 
Define 

Afat(/~) = {•i: A(v) N (~i + 1) ¢ O}. 

Clearly Afat(p) is a club subset of g of eardinality at most A. If gi E Afat(p), 

then define an ordinal 

c~(v, i) = sup(A(~) Cl ('~i + 1)). 

Since A(v) is closed, 

c~(u, i) E A(u) n (hi + 1) 

whenever ~i E Afar(v). 

CLAIM 3.9: If~i  E Af~t(u) and it E lim(C(v, ct(u,i)), then 

c~(v, i) E A(#) n ('~i + 1), 

~i E Afat(it),  

i) _< i) 

and 

C(v, a(v, i)) N it C_ C(#, a(u, i)) _C C(, ,  e(#, i)). 

Proofi This is immediate from the definitions given before the statement of 

Claim 3.9 with clause l(b)(iii) and clause l(b)(iv) of Definition 3.6. I 

By recursion on u, define for '~i E Afat(u)~ 

cfat (  b', /~i) : C(/], ol(p, i ))  U U { c f a t ( ~ , / ~ i ) :  ~ E l im(C(v, ~(u, i)))}. 

This definition makes sense since if # E lim(C(v, ~(~, i))), then p < v and, by 
Claim 3.9, ~i E Afat(#). 

The next claim shows that (A fat, C fat) satisfies clause 1 (b)(ii) of Definition 3.6. 

CLAIM 3.10: I f~i  E dfat(12), then Icfat(1], ~;i)l ~ t~t. 

Proo~ By induction on u, we see that Crat(u, ~i) is the union of at most 

(c~(u,/))+-many sets, each of cardinality at most s+. Since c~(u, i) < ~i, we 

are done. I 

The following claim is another step towards seeing that (A f~t, C fat) satisfies 

clause 2 of Lemma 3.8; the full verification of this will be given in Claim 3.14. 
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cfat(/],/~i) ["1 It -- c fa t  (it, Ni). 

Proof." The part about ~;i • Afat(it) was already proved in Claim 3.9. We prove 

the other part by induction on u. Assume that Claim 3.11 holds for all J < v 

and that It • lim(C(v, e(u, i))). 
First, suppose that It is the largest limit point of C(v, a(v, i)). Consider an 

arbitrary Itt < It such that 

By Claim 3.9, 

In particular, 

It' • lim(C(p, c~(v, i))). 

C(v, a(v, i)) N It c C(it, a(it, i)). 

It' e lim(C(it,  (it, i))). 

By the induction hypothesis 

Cfat (it, El) N It! -- c fa t  (it I,/t;i). 

By the arbitrariness of It~ and the definition of Cf~t(v, ~i), 

cfat (/],/t;i) : C(y, oL(v, i)) U cfat (it, gi). 

But 
C(~,, a(~,, i)) r~ p c_ C(#, a(p, i)) c_ cfat (p, gi) 

by Claim 3.9 and the definition of cfat(#, ~i). Thus 

It follows from the last equation that Claim 3.11 holds in the first case. 

Second, suppose that C(v ,a (v , i ) )  has no largest limit point. Consider an 

arbitrary v' > # such that v' E lim(C(v, a(v, i))). By Claim 3.9 applied to v' 

and v, 
i)) n . '  c c ( J ,  i)). 

In particular, 
# e lim(C(v', a ( J ,  i))). 
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By the induction hypothesis. 

cf~(J ,  ~) n ~ = cf~t(~, ~). 

By the arbitrariness of # and the definition of cfat(u, ~i), 

cfat (p, t~i) N ~ = (C(//, og(/], i ) )  r~/z) LJ cfat(/z, t£i). 

But 
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CLAIM 3.12: Suppose that tq E Afat(//) and 

p = sup(lim(e(u, c~(u, i)))). 

Then 

cfat( u, ~;i) = { cfat(# '  t~i) U (C(p, ct(~', i)) - p) i f #  < u, 
U{Cf~t(u',~d: u' E l i m ( C ( u , a ( u , i ) ) ) }  i f  tt = u. 

Proof." The characterization follows by induction on u from the definition of 
(A fat, C fat) and Claim 3.11. I 

CLAIM 3.13: I f  ~i E Afat(u), then Cfat(u, tCi) iS club in u. 

Proo~ By induction on u. Assume that Claim 3.13 holds for all # < u and that 
# E lim(Cfat(u, gi)). We will show that p E Cfat(u, ~i). 

First suppose that there is no limit point of C(u, a(u, i)) strictly greater than 

p. By Claim 3.12, p. must be the largest limit point of C(u, ct(u, i)). So 

It E C(/2, Ct(P, i)) ~ cfat(//, gi). 

On the other hand, if u' > p and u' E lim(C(u, c~(u, i))), then by the induction 
hypothesis and Claim 3.11, 

p E lim(Cfat (u, ~;i) V/u') = lim(Cfat (u ', ~;i)) 

G Cfat(v ', hi) = Cfat(u, ~i) n u'. . 

c( . ,  ~(., i)) n .  c c ( . ,  ~(.,  i)) c_ d~t( . ,  ~) 

by Claim 3.9 and the definition of Cfat(p, gi). Thus Claim 3.11 follows in the 

second case too. I 
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cf~t(~, ~i) n p = Cf~t(p, -i).  

Proof: By induction on v. Assume that Claim 3.14 holds for all v ~ < v and that  

p e lim(Cfat(v, gi)). If # • lim(C(v, o~(v, i))), then we are done by Claim 3.11. 

So we may assume that there is a v' > # such that v t • lim(C(~, c~(~, i))). Then 

cfat(/j,/~i) N/]! = cfat  (V ',/~i) 

by Claim 3.11, so # • lim(Cfat(v ', ~i)). By the induction hypothesis, 

cfat(/ j , /~i)  n p : cfat  (p, ~i). 

Putting the equations together, we are done. | 

The next result implies that  (Afat, c fat) satisfies clause l(b)(iv) of 

Definition 3.6. 

CLAIM 3.15: If~i • Afar(/]) and i < j ,  then ~j • Afar(v) and 

cfa t (  p,/~i) C cfat(p, ~j). 

Proof'. Obvious from the corresponding assumption on (A, C) and the definition 
of (A fat, cfat). 1 

From the claims above, it is immediate that (A fat, C fat) satisfies the require- 

ments of Lemma 3.8. 1 

4. Prikry forcing, good matrices and weak square 

It is proved in [17] that  after forcing with Prikry forcing at a measurable cardinal 

the weak square principle 71" holds. In this section we strengthen this result, 

showing that if ~ is measurable in V and W is a Prikry extension of V then [3~ 

holds in W. In general we can not hope to improve this; by Theorem 2.1 and the 

following result, doing Prikry forcing at a sufficiently large cardinal ~ will make 

71<~ fail in the generic extension. 
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FACT 4.1 ([5]): If t~ is n+-supercompact,  F is Prikry forcing defined from some 

normal measure on g, and S = {c~ < ~+: cf(a)  < n}, then 

V • ~ "finite sets of stationary subsets of S reflect simultaneously". 

A note on history: Originally we had a false proof of Theorem 4.2 based on 

Theorem 3.1 and an incorrect version of Lemma 4.4. Mat t  Foreman pointed out 

that  we could get the conclusion more directly from the first version of Lemma 

4.4. We then discovered and fixed the problem in Lemma 4.4, retaining Foreman's 

direct way of drawing the desired conclusion. 

THEOREM 4.2: Let ~ be measurable in V. Let U be a normal measure on ~ and 

let Pu be the Prikry forcing defined from U. I f  W is a generic extension of V by 

Pu then [3~ holds in W.  

Proof: The key idea is to do most of the work in V. We will build in V an object 

called a "good matr ix",  and then working in W we will read off the required 

Z]~-sequence. It is helpful to think of the construction of a good matrix as a 

refinement of the (very easy) construction of a M*-sequence for ~ inaccessible. 

The proof will be structured as follows: we will start  by defining a good 

matrix, will show how to use one to build a [7~-sequence (hopefully motivat- 

ing the definition) and will finish by constructing one. 

Let A be a regular cardinal with A > ~1. We will say that  a set A C A is a club* 

subset of A if and only if there is C club in A such that  {a E C: cf(a)  > co} C_ A. 

It  is easy to see that  the collection of club* subsets of A is a normal filter on A, 

and that  any unbounded subset of A which is closed under uncountable suprema 

is club*. 

We claim 

measure g .  

and let j :  V 

that  every club* subset A of ~ has measure one for the normal 

To see this let C be club in n such that  {a C C: el(a)  > co} C_ A, 

- - +  M be the ultrapower map associated with U. Since j (C)  n ~ = 

C and j (C)  is closed we see that  n c j (C) ,  and since ~M c_ M we see that  

M ~ cf(~) > co; it follows by the elementarity of j that  n C j (A) ,  and so by the 

normality of U that  A E U. 

It is a well-known fact about Prikry forcing that  any Per-generic co-sequence 

is eventually contained in any set in U. In particular, we see that  a Pu-generic 

co-sequence is eventually contained in any club* subset of ~ from the ground 

model. 

Definition 4.3: Let A be an inaccessible cardinal, and let 

S = {a < A+: cf(a)  < A}. 
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A g o o d  m a t r i x  for  )~ is an array of sets 

(c(a ,  i): c s, i E Xa) 

such 

(1) 
(2) 
(a) 

(4) 
(5) 
(6) 

that  

C(a ,  i) is club in c~, 

Xa is a club* subset of A, 

ot(C( , i)) < A, 
i f / E  Xa and Z E l im(C(a, i ) )  then i E X~ and C(a,i)M/3 = C(Z,i), 
if i, j E Xa and i < j then C(~, i) c_ C(c~, j ) ,  

if c~,/3 E S with/3 < ~ then ~ E l im(C(~,i))  for some i E Xa (and thus for 

all larger i E X~ by the preceding clause). 

We now show how to finish the proof of Theorem 4.2, given the existence of a 

good matrix for n. Let (C(a,i): ~ E S,i E Xa) be such a matrix. Let (hi: i < co} 

be a Prikry sequence generic for the forcing IPu. As we showed above, for every 

a the club* set X~ contains a final segment of (hi: i < w). 

We define our [5~-sequence (Da: a < n +, lim(c~)}. Let ct < n+ be a limit 

ordinal. We distinguish two cases. 

CASE I: a E S. Let 7?a = {C(a, nj): nj E X~}. 

CASEII: a • S ,  s o t h a t V  ~ c f ( a ) = t ~ a n d W  ~ c f ( a )  = c f ( n ) = w .  Choose 

Ca to be any set which is club in a with ot(Ca) = w, and then set :Da = {Ca}. 

We need to verify that we have defined a [:]~-sequence. It is clear that I:Da I -< w 

and :Da is a family of clubs each with order type less than n. To finish, suppose 

that C E Da and fl E lim(C). Clearly a E S, because otherwise C = Ca and Ca 

has no limit points. So C = C(a ,  ny) for some j with/~j E Xa. By the properties 

of a good matrix ~j E X~ and C(~, my) = C n/3, so that C n/3 E 7? z. 

This shows that (:Da: a < n+} is a [:]~-sequence, so [ ~  holds in W and we are 

done once we have shown the following Lemma. 

LEMMA 4.4: If  )~ is inaccessible there is a good matrix. 

Proof'. We construct a good matrix by induction on a E S. 

CASEI:  a = w .  We s e t X ~ = A a n d C ( w , i ) = w f o r a l l i .  

CASE 2: o~ = /3 + W for some limit ordinal /3 with cf(/3) < A (that is to say 

/3 E S). We set Xa = XZ and C(a, i) = C(/3, i) U [¢~, a)  for all i E Xa. 

Clearly C(a, i) is club in a. By definition X~ = X~, and so X~ is club*. Since 

a = /3  + a~, ot(C(ct, i)) = ot(C(/3, i)) + co and so ot(C(a,  i)) < ~. 
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If  i E X a  and 7 E l i m C ( a , i ) ,  then  either 7 c l imC(/3,  i) or 7 = /3. In  the 

former  case we have by induction tha t  i E X~ and C(7 ,  i) = C(/3, i) M 7, in the 

la t ter  t ha t  i E XZ = X~ and C(% i) = C(/~, i): in ei ther case C ( a ,  i)M7 -- C(7 ,  i). 

If i, j C X~ with i < j then  by induct ion C(/3, i) C_ C(/3,j), so t ha t  C(a,i)  c_ 
C ( a ,  j ) .  Finally, if 7 e S A a then either ? E S M/3 or 7 = /3 :  if ~ C S N/3 then  

by induction 7 • lim(C(/3, i)) for some i and then ~ / •  l im(C(a ,  i)) for the same 

i, while if ? -- /3 then ~ • lim(C(c~, i)) for every i • X~.  

CASE 3: c f (a )  = W and a is a limit of  limit ordinals. We choose (c~m: m < w) 

an increasing sequence of ordinals in S which is cofinal in a .  We set 

X~ = {i < ~: Vm < w i • X ~  A r m  < n < w a m  • l im(C(a,~, i ) )} .  

X a  is a club* set because it is a final segment  of Nj xaj- 
We observe tha t  if i • X~ then C ( a m ,  i) = C ( a n ,  i) M a m  for all m < n < w. 

We now set C ( a ,  i) = U m  C(am, i) for all i • Xa .  

C ( a ,  i) is club in c~ because every initial segment  is an initial segment  of 

C(am, i) for some m. A similar a rgument  shows tha t  o t ( C ( a , i ) )  < A. I f  

/3 • l i m ( C ( a , i ) )  t hen /3  • l im(V(a ,~ , i ) )  for some m,  and by induction i • XZ 

and C(/3, i) = C(am, i) M/3 = C(c~, i) M ,8. 
I f i ,  j • X~ with i < j then by induction C(am,i)  C_ C(a~ , j )  for all m < w, 

so tha t  C ( a , i )  C C ( a , j ) .  Finally, if/3 • S N a t hen /3  • S M a m  for some m,  

and so by induct ion ~ • l i m ( C ( a m , i ) )  for all large i • X ~ ;  it follows tha t  

• lim(C(c~, i)) for any large enough i • X~.  

CASE 4: w <cf(c~)  < A. Let  c f (a )  = p s a y .  As in C a s e 3 w e f i x  ( a m : r e < p )  

an increasing and continuous sequence of member s  of S which is cofinal in c~. We 

define 

Y~ = {i < A: Vm < p i ¢ X~ m and Vm < n < p a,~ e l i m C ( a n , i ) } .  

Note tha t  Y~ depends on the choice of the sequence (am: m < p) used in its 

definition. Exac t ly  as in Case 3, Y~ is a club* set, and if i E Y~ then  C(o~m, i) = 
C ( c ~ ,  i) M a m  for all m < n < p. 

Unfor tuna te ly  Y~ will not quite do as a candidate  for X~ because its depen- 

dence on the choice of (am: m < p) would cause a p rob lem in Case 5. We choose 

X~ in a more  canonical way and make it as large as possible. To be more  precise 

we let 

X~ = {i < A: 3 E  club in a k/7 ¢ l im(E) ( i  E X~ A E N 7 = C(7 ,  i))}. 
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If  i E Ya and we let E = U m  C( Olin, i) then  it is easy to check tha t  E witnesses 

i E X~, so tha t  Y~ C_ X~. 

Suppose tha t  i E X~ and E ,  E f are bo th  clubs in c~ witnessing this. Then  

E N E ~ is club in a and 

E =  U C (% i )= E ' .  
h, Elim(ENE r) 

For each i E X~,  we now define C(a, i) to be the unique E which is club in 

a and is such tha t  V3' E l im(E)  E M ? = C ( %  i). Notice t ha t  if i E Y~ then  

au tomat ica l ly  C(a, i) = Um C(am, i). 
Since every initial segment  of C ( a ,  i) is an initial segment  of C(7 ,  i) for some 

7 < a ,  o t ( C ( a , i ) )  < A. I f /~  E l i m ( C ( a , i ) )  then  /~ E l i m ( C ( % i ) )  for some 

1' E lim(C(c~, i)), and we have by induction tha t  i E XZ and 

C(/~, i) = C('7, i) n/3 -- C(o~, i) n/~. 

Let i , j  E X~ with i < j .  Let  C(a,i) = E and C(a,j)  = F. Then  

E =  U C(%i) C_ U C(%j) = F, 
,'/Elim(ErnF) "lClirn(EnF) 

t ha t  is to say t ha t  C(a,i) C_ C(a,j).  Finally, we may  argue as in Case 3 t h a t  

S rh a c U i e r ,  l i m C ( a ,  i), which suffices since Y~ _C X~. 

CASE 5: a = / ~ + w  where cf(/J) = )~. We fix ( f l i : i < A )  an increasing and 

continuous sequence of member s  of S which is cofinal in/~. Let  

Z = {i < A:Vj < i i E X~j and Vj < k < i ~j E l im(C(/Jk, i ) )} .  

We claim tha t  Z is club* in A. To see this first observe t ha t  if D = 

{i < )~: Vj < i i E X ~  } then  D is a diagonal  intersection of sets in the club* 

filter, and since tha t  filter is normal  D is a club* set. Define f :  [A] 2 - - +  ,~ by 

set t ing f ( j ,  k) equal to the least i E X~k with 9j E lim C(l~k, i), and let C be the 

club set of i < A which are closed under  f .  If  i E D n C then: 

(1) Since i E D, i E X/~j for all j < i. 

(2) If  j ,  k < i then since i E C we have f ( j ,  k) < i, and by definition f ( j ,  k) E 
XZk and /3j E lim(C(l~k,f(j, k))). Since i E D we also have i E XZk, 

and so by the proper t ies  of a good ma t r ix  C(/Jk, f( j ,  k)) C_ C(l~k, i) and so 

/3j E lim(C(/3k, i)). 

I t  follows tha t  D M C C_ Z, and so Z is a club* set. 
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We let Xo = {i E DMC: cf(i) > co}. Let i ¢ X~ and consider the construction 

at level/3i; since cf(i) > w and the sequence (/3j: j < ,~) is continuous, cf(/~i) = 

cf(i) > w and the relevant clause of the definition is Case 4. 

If we let E = Uj<,~ C(/3j,i), then the fact that  i E Z and the coherence 

properties of the good matrix imply that V? C lira(E) E M '7 = C(%i) ,  so 

that by the definition of XZ~ and C(/3i, i) from Case 4, i C XZ~ and C(/~i, i) -- 

Uj<  c @ ,  i). 
We define 

C(o~, i) = C(/3i, i) U {~i}  U [/3, a). 

Clearly C(c~,i) is club in c~, and o t (C(a , i ) )  -- ot(C(13i,i))+ w < )~. If '7 ¢ 

limC(c~,i) then either 3, E limC(/3i, i) or ~/=/3i, and in either case it is easy to 

see that i e X~ and C(% i) = C(gi, i) M ? -- C(c~, i) M 7. 

Let i, j ¢ X~ with i < j .  By induction 

C(gi,i) = U c(/3k,i) c U c(/~k,j) c_ U c(/3k,j) = c(/3j,j). 
k<i k<i k<j  

Since C(~j,j) is club in /3j and C(/3i, i) is cofinal in /3i, it follows that ~i E 

C(~j, j). Therefore by definition C(a, i) C_ C(a, j). 
Finally let 7 c S M c~, and observe that  since/3 ~ S we have S M a = S A/3. 

Find i such that "7 < fli, and then j E X~ such that  i < j and 3, E limC(/3i,j) .  

Since C(~j,j) = Uk<j C(/3k,j), "7 e limC(13j,j). 
This concludes the proof of Lemma 4.4. I 

The construction of a good matrix for ~ in Lemma 4.4 concludes the proof of 

Theorem 4.2. I 

It is natural to ask what happens when the cofinality of ~ is changed to some 

value other than w, for example by Radin forcing. Apter and Cummings [1] 

studied this question and used the ideas of Theorem 4.2 and Fact 4.1 to show 

FACT 4.5: Let GCH hold and let t~ be a n+5-supercompact cardinal. Then there 

exists a forcing poset P such that in V~': 

(1) t~ is t~+5-supercompact. 

(2) For every singular cardinal A < 

(a) there exists S c_ A+ stationary such that any family of size less than 

cf(A) of stationary subsets of S reflects simultaneously to a point of 

cofinality tt for unboundedly many # < A, 

(b) the combinatorial principle rq~ f(a) holds. 
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We also note a connection with some work of Gitik, Dzamonja and Shelah. 

Strengthening a result of Gitik [10], Dzamonja and Shelah [7] showed some results 

on "outside guessing of clubs" which have the following corollary: 

FACT 4.6: Let V C W be inner models of ZFC and let GCH hold in V. 

Suppose that  a is a W-cardinal such that  g+y = a + ,  W ~ cf(g) = w and 

V ~ g is inaccessible. Then there is in W an w-sequence which is cofinal in 

and is eventually contained in every club* subset of a from V. 

It follows that Theorem 4.2 can be generalised to a wider class of extensions. 

5. Distinguishing squares 

Jensen showed in unpublished work [11] that [3s I is strictly stronger than [32.  

His methods can be used to distinguish the principles {~ for a fixed regular 

g, and similar results can be proved [5] for g singular. In this section we use 

methods similar to those of [11] to show where the simplest indexed versions of 

weak square principles fit in. 

THEOREM 5.1: Let  ~ be Mahlo. Then: 

(1) There is a forcing extension in which ~ = ~ ,  [:]~ holds and Index [3~, 

fails. 

(2) There is a forcing extension in which ~ = R2, Index[32~ holds and [3~ 

fails. 

Proof: We will prove the first claim of the theorem in some detail, and then 

indicate how to modify the proof to give the second claim. 

Let 5 be inaccessible. We begin by describing a countably closed forcing ~5 

which will collapse (i to be R2 and at the same time will add a [3~l-sequence. 

The sequence we add will have the special property that at points of uncountable 

cofinality it only gives a single club set. 

p C ~ iff p is a function such that  

(1) dora(p) is a countable set of limit ordinals less than (f, 

(2) if cf(~) = w and c~ e dom(p), then 1 _< Ip(~)I <_ 2 and each set in p(c~) is a 

club subset of c~ with countable order type, 

(3) if cf(~) > w, then p(~) = {C} where C is a closed bounded subset of 

(~ with countable order type, and the largest point of C is greater than 

sup(dom(p) M ~), 

(4) if c~ c dom(p), C E p(c~) and 3 • lim(C), then/3 • dom(p) and CM/~ • p(f~). 

I fp ,  q • ~ ,  t h e n p < q i f f  
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(1) dora(q) _C dom(p), 

(2) for all a • dora(q), 

(a) if cf(a)  = w then p(a)  = q(a), 
(b) i fc f (a )  > w, p(a) = {C} and q(a) = {D} then P = C N ( m a x ( D ) + l ) .  

LEMMA 5.2: Let 6 be inaccessible. Then 
• P~ is 6-c.c. and countably closed. 
• P~ collapses 6 to R2 and adds a [3~l-sequence. 

Proof'. This is routine. The only slightly delicate point comes in checking that  

P~ is countably closed. Let (Pn: n < w) be a decreasing sequence of conditions, 

and let a • ~J, dom(p, )  be an ordinal such that  cf(a)  > w and the value of 

pn(a) does not eventually stabilise for large n. The third clause in the def- 

inition of a condition implies that  maxpn(a) > sup(dom(pn) N a) ,  so that  if 

/3 = sup ,  m a x p , ( a )  then/3 ~ U ,  dom(pn) and we are at liberty to define a lower 

bound p~ for (Pn: n < ~) with p~(/3) = {Unpn(a)}. | 

Now we suppose that  7, 6 are inaccessible with 7 < 6. We will show that  ?~ 

can be viewed as a three step iteration P7 * "i[ • Q, where T adds a suitable club 

at "7 and Q adds suitable clubs in the interval (7, 6). Conditions in T and Q are 

countable sets of ordinals, and so since P~ is countably closed we will have T c V 

and Q c V (though of course these posers will not be members of V). 

Definition 5.3: Let 7, fi be inaccessible with 7 < 6. 

(1) If C =  (Ca: a < 7) is the sequence added by PT, then T is the poset in V[C~ 
defined as follows: 

(a) t • T iff t is a countable, closed and bounded subset of 7 such that  

Ya E lira(t) t N ~  C C~; 

(b) if t , t '  c T then t _< t '  iff t = t '  N (max(t) + 1). 

(2) If C =  (Ca: a < 7) is the sequence added by P~ then Q is the poset in V[C~ 

defined as follows: 

(a) q • Q iff q is a function such that  

(i) dora(q) is a countable set of limit ordinals in the interval (7, 6), 

(ii) if cf(a)  = w and a • dom(q) then 1 <_ [q(a)[ _< 2 and each set 

in q(a) is a club subset of a with countable order type, 

(iii) if cf(a)  > w then q(a) = {C} where C is a closed bounded 

subset of a ,  C has countable order type, and max(C) > 

sup(dom(q) D a) ,  

(iv) if a • dom(q), C • q(c~) and/3 • lira(C) then 

(A) If/3 > 7, then/3 • dom(q) and C N 3 • q(3), 



84 J. CUMMINGS AND E. SCHIMMERLING Isr. J. Math. 

(b) 
(B) if/3 < '7, then C n/3 • Cz; 

if q,q~ • Q then qt _< q iff 

(i) dom(q) C_ dom(q'), 

(ii) for all a • dom(q) 

(A) if cf(a) = w then q'(c~) = q(a), 

(n) if cf(c~) > w, q(a) = {C} and q'(c~) = {D} then D = 
C n (max(D) + 1). 

Remark: We can define Q in V ~% because 7 cannot be a limit point of any club 

inC~ f o r T < a < £  

LEMMA 5.4: Let 7, ~ be inaccessible cardinals with 7 < 5. Then there is an 

isomorphism between a dense subset of P~ and a dense subset o f~  7 * T * Q. 

Moreover, Q is countably closed in V P~*v. 

Proof: Let 

and 

Do = {p • P6:7 C dom(p)} 

D1 = {q: 3p C Do q = (p F T, P(7),P r (7,(f))} • 

It is easy to see that Do is dense in P~, D1 C_ ~ z , T , Q ,  and the map 

¢: P~ ) (P r 7,p(7),p F (7,6)) is an isomorphism between Do and D1. In fact 
we wrote the definitions of T and Q to make this true. 

It remains to be seen that D1 is dense in 1~7 * T • Q. To see this let (/9, i, q) be 

an arbitrary condition in P~ * T ,  Q. Since Q c_ V we may find (pl , i l )  <_ (p,i) 

and q such that (Pt, il) IF ~ = ~ and then p2 _< pl and tl such that p2 IF- il = {1. 

By construction (P2, tl,  q) E P7 * T * Q and (p2, tl, q) _< (p, i, 4). 
Now P2 I• tl  E T and (P2, tl) IF q • Q. It is routine to check that if we define 

p* = P2 U {(7, tl)} U q then p* • ~'6 and ~b(p*) = (P2, tl, q). 
The proof that  Q is countably closed in V ~%*v is just like the proof that  ~5 is 

countably closed in V. | 

We will be done once we have proved the following result. 

CLAIM 5.5: I f n  is Mahlo then Index[52 fails in V ~ .  

Proof: Suppose not. For simplicity we assume that the empty condition forces 

that the principle holds, say 

r-~2 ,~ IF-~ "(A, C) witnesses I n d e x , % .  
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By the g-c.c, for P,~ and the Mahloness of ~ we may find (5 < t~ such tha t  (5 is 

inaccessible and (A I (5, C I (5 × R1) is a name in V Pa. This implies tha t  

I~-Pa " (n  I 5 , 0  I (5 X ~1) witnesses Indexrq~ ." 

We now identify P .  with Pa * T ,  Q where T, Q are defined as in Lemma 

5.4. Fix a condition (p, t, q) which forces tha t  a E A((5) for some a < R1. If 

/ )  = C(6, a) then (p, t, q) forces tha t  D is club in 5, ot(D) = R1 and, V'y e lim(/)),  

b n ~ = O(-y, ~). 
The object /)  cannot exist in the generic extension by P~, so we claim tha t  

we may find conditions (p', to, qo) and (p', t l ,  ql) both  extending (p, t, q) and an 

ordinal ~ < (5 such tha t  

(v', to, q o ) , ~  e D, 
(v',tx, q~) IF~ ¢ D. 

If this were not so then we would have 

gp' <_ p V~,to, qo, t l ,ql  (p',to, qo) II- ~ E b ~=~ (P',Q,ql) it- ~ C D, 

which would imply tha t  below (p, t, q) the name D was equivalent to a P~-name. 

We build sequences 

(Pn: 1 ~_ n < co}, (t 2n+1". n < co}, (t 12n+2.. n < co}, 

("/1~2"+2" n < co) and (~n: 1 _< n < co) 

(v~+l: n < co), 

such tha t  

(1) Pn C IFa, Pi _< P' and (Pn: 1 _< n < co) is decreasing. 
//.. t2n+l ~2n+l'~. (2) (Pl, t~, qo 1) _< (p', to, qo) and \vt,2n+l, o , vo I. n < co) is decreasing. 
/f_ t2n+2 ~2n+2,, (3) (p> t~, ql 2) _< (p', t l ,  ql) and \tu2n+2, 1 , ¢/1 }: n < co} is decreasing. 

(4) (¢n: 1 _< n < co} is an increasing sequence of ordinals such tha t  

(a) ~1 > max{max(to),  max(t  0 ,  ~}, 

(b) ¢2n-{-1 < max{max(t~)n+l), supdom(P2n+l)} < ¢2n+2, 

(c) ¢2,~+2 < max{max(t~n+2), sup dom(p2n+2) } < ¢2~+a, 

(d) (P2n+l,+2~+l _2n+1, '0 ,VO j l~- ~2n+* ¢ /), 
(e) (p2n+2, t~ ~+z, q2~+2) IF- ~2,~+2 e D. 

Let p~ E Pa be a lower bound for the sequence (p,~: 1 ~_n<co). 
Since Q is countably closed in V ~a we may find q~ and q*l such tha t  (p~, q~) 

is a lower bound for ((pun+l,q2n+l): n < co) and (p~,q~) is a lower bound for 
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((P2n+2, q~n+2): n < w}. Now define 

~* = sup ~n, 
n 

t~ = Uto2n+' U {~*}, 
n 

n 

v* u {(¢*, 

It is routine to check that (p*, t~, q~) and (p*, t~, q~) are both conditions in P5 * 
T * Q .  

The conditions (p*, t~, q~) and (p*, tl, q~) both force 4" to be a limit point of 

L), so 
(p*, t;, q~) IF~ e d(~*, (~), 

(p*, t~, q~) IF-~ ~ C(~*, a). 

This is absurd because C(~*, a) is a name in V ~ ,  so that the preceding 

equations imply p* I~- ~ E C(~*, a) and p* IF ~ ~ C(4*, a). I 

This concludes the proof of the first claim of Theorem 5.1. 
For the second claim, we start by defining a poset P~ which is designed to 

add an Index [~ ,  sequence while collapsing an inaccessible 5 to become R2. This 

sequence will have the special properties that it only gives one club set at limit 
ordinals of cofinality greater than w, and that the only indices which are used 

are 0 and 1. 
p E ]?~ iff p is a pair (a, c) where 
(1) a is a function with dom(a) a countable set of limit ordinals less than 5, 

(2) for every u E dora(a), a(u) is a nonempty subset of {0, 1}; if cf(u) > w then 

l a ( v ) l  = 1, 

(3) c is a function with domain {(u, a): u e dom(a), a e a(u)}, 

(4) if cf(u) = w and (u, a) e dom(c), then c(u, o~) is a club subset of u with 

countable order type, 

(5) ifcf(u) > w and (u, (~) e dom(c), then c(u, c~) is a closed bounded subset ofu  
with countable order type, with the additional property that max(c(u, (~)) > 

sup(dom(a) n u), 

(6) if (u, a) C dom(c) and t3 C lim(c(u, a))  then (u,/~) • dom(c) and c(u,/3) = 
~ncO,,~). 

Conditions in P~ are ordered as follows: (a> cl) < (a0, Co) iff 

(1) dom(ao) C_ dom(al); 
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(2) for all u e dom(ao) 

(a) a0( ) = 
(b) For all a • ao(u), co(u,a) = Cl(/],o~). 

As before it is easy to see that 
(1) P~ is countably closed and 6-c.c. 
(2) l?~ collapses 6 to R2 and adds (A, C) witnessing Index[]21. 
P~ is susceptible to a factor analysis very similar to that which we gave for P6 

above. The main difference is that  we need two versions of T and Q, reflecting 

the fact that at 7 we must decide whether to put a club set with index 0 or a 

club set with index 1. 

LEMMA 5.6: Let 7, 5 be inaccessible with ? < 5. There exist posetsT °, T ], Qo, Q1 

• V P, such that: 

(1) If  p = (a, c) • P] and (% 0) • dom(c) then P*6/P is isomorphic to a dense 

subset of 

?~/ (a  t 7, c t 7 x 2) x V°/e(7,0) x Q°/(a I (%~),c I (%~) x 2). 

(2) If  p = (a,c) • P~ and (7,1) • dom(c) then P~/p is isomorphic to a dense 

subset of 

P~/(a [7, c t 7  x 2) x T ' /c(7 ,  1) x Q1/(a I (7 ,6) ,c  I (7,~) x 2). 

(3) QJ is countably dosed in VP*~ *vj. 

Proof'. The definitions and proofs are like those of Definition 5.3 and Lemma 

5.4. | 

CLAIM 5.7: If  n is Mahlo then [3~ 1 fails in V ~*~. 

Proo~ Suppose that 

Ib~;~ "(/)~: a < n} is a E]~-sequence". 

By the n-c.c, for P~ and the Mahloness of n we may find (~ < n such that 6 is 

inaccessible and (Da: a < 5} is a name in V ?~. This implies that  

It-p~ "(b~: a < ~} is a []~-sequence". 

We now consider the P~-name D = Ds. We claim that we may find conditions 
(p, t o, qO) • p ~ ,  T o ,  Qo and (p, t 1, ql) • p ~ ,  T 1 ,  Q1 together with an ordinal 

< 5 such that  either 
(p, t0 q0)[b( • D, 

(p,t 1,ql) ]F-~ ¢ D, 
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or 
(p, t o, qO)IF~ ¢ D, 

(p,t ' ,q')  I~-~ c D. 

To see this we first find conditions (pO u o, rO) and (pO o o Ul, r ,)  from/~6*T° * Q ° 
and an ordinal ~ such that 

(pO, u~, ro °) IP~ • D, 
o o o (p ,u,,r,)IF~ ¢ b. 

This is possible because b names a set which is not in V ~ .  We now find (p, u 1, r 1) 
in P~ * T 1 * Q1 such that p < pO and (p, ul, r 1) decides the statement "~ • D", 

and then choose t i and qi accordingly. 

We build sequences 

(Pn: 1 < n < w), (t2n+l: n < w), (t2n+2: n < w), (qo2n+l: n < w), 

(q2n+2:n<w} and ( ¢ n : l < n < w }  

such that: 

(1) Pn E PS, Pl <-- P' and (Pn: 1 < n < w) is decreasing. 
(2) (P2n+,, t20 n+l, qo 2n+1) • P5 * 'F° * Q0, 

Pl, 1 1 to, qo) < (P, to, qO), 

and ((P2n+l,t2n+l q2n+l): ~o , n < w) is decreasing. 
(3) (P2n+2, t2n+2, q~n+2) • p ~ ,  T1 , Q1, 

t l ,ql)  < (p, tl, ql), (P2, 2 2 

and ((P2n+2, t~ ~+1, q2~+2): n < w} is decreasing. 
(4) (~n: 1 _< n < w} is an increasing sequence of ordinals such that 

(a) ~1 > max{max(t°), max(t1), ¢}, 

(b) ~2~+1 < max{max(t~n+l),supdom(p2n+l)} < ~2n+2, 

(C) ~2nq-2 < max{max(t~n+2), supdom(p2n+2)} < ~2n+3, 

(d) (P2~+1, ÷2~+1 _2~+1, °o ,Uo )l~-~2n+~•/), 
(e) (P2n+2, t2n+2, q2n+2)I~- ~2n+2 • /~" 

Let if* = U~ fin, and let p~ be a lower bound for (p~: 1 _< n < w). Define 

uO=Ut~n+,U{~*}, 
n 

u' = Ut~ , , , ,~  u {~;,}, 
n 

p* =p~ u {((~*, o),~°), ((~*, 1), ~a)}. 
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Using the countable closure of the QJ, we find r ° and r 1 such that  (p*, u °, r °) is a 
/[~ ,2n+l .2n+l~. W), and (p* ,u l , r  1) is a lower bound lower bound for \~,/J2n+l, v0 , ¢/0 }. n < 

/[~ t 2 n + 2  q2n+2): W}. for \~P2n+2 ,  1 ~ n 

The conditions (p*, u °, r °) and (p*, u 1, r 1) both  force (* to be a limit point of 

L)~ SO 

(p ,  r 0) e b e ,  
(p*, r 1) ¢ 

But D¢. is a VP~-name, so p* Ik ( C De. and p* I~- ( ¢ D~.. This is a contra- 

diction. | 

This concludes the proof of Theorem 5.1. | 

6. G l o b a l  s q u a r e  a n d  1 - e x t e n d i b l e  c a r d i n a l s  

In this section we investigate the question of how strong a large cardinal axiom 

has to be before it becomes incompatible with the existence of square sequences. 

We start  by recalling the definition of a 1-extendible cardinal. 

Definition 6.1: n is 1 - e x t e n d i b l e  iff there exist a cardinal A > g and ~: H~+ > 

HA+ an elementary embedding with crit(Tr) = ~ and 7r(t¢) = A. 

For more information about extendible cardinals see Kanamori ' s  book [14]. We 

note that  if 7 is a cardinal then 7 is definable in H~+ as the largest cardinal, so 

that  the demand that  7~(t~) = A in the definition of 1-extendibility is superfluous; 

it follows from the elementarity of the map ~. 

Jensen [13] introduced a strengthening of 1-extendibility called quas i -  

c o m p a c t n e s s .  For expository purposes we will also define an intermediate 

notion 1 - e x t e n d i b l e  in A. 

Definition 6.2: Let t~ be a cardinal. 

(1) For A C_ H.+ ,  n is 1 - e x t e n d i b l e  in A iff there exist a cardinal A > n, a set 

B C HA+ and an elementary embedding ~ from (H~+, C, A) to (HA+, C, B), 

such that  ¢(n) -- A and the critical point of n is n. 

(2) n is q u a s i c o m p a c t  iff t~ is 1-extendible in A for all A C_ H.+ .  

Jensen showed that  if C = (Ca: (~ < n +} is such that  Ca C ~ for all c~, and t¢ 

is 1-extendible in C, then C is not a [3~-sequence. In particular, if t~ is quasi- 

compact then [::]~ fails. Reflecting on this proof Jensen introduced the notion of 

s u b c o m p a c t n e s s .  
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Definition 6.3: Let ~ be a cardinal. ~ is s u b c o m p a c t  iff for all A C_ H~+ there 

exist a cardinal a < to, a set a C Ha+ and an elementary embedding ~r from 

(Ha+, e, a) to (H~+, e, A), such that crit(Tr) = c~ and 7r(~) = ,¢. 

Jensen's argument shows that if ,~ is subcompact then D~ fails. We note that 

a subcompact cardinal need not be measurable. In fact, if ~ is measurable and 

subcompact and U is any normal measure on t¢ then it is routine to check that 

is subcompact in Ult(V, U), so that  there are many subcompact cardinals below 

t~. 

At this point a few words about the inner model program are in order. The 

goals of the program are to construct canonical "L-like" inner models for large 

cardinal axioms, and to analyse the internal structure of these models and their 

relation to V. This analysis can be used to obtain lower bounds on consistency 

strength for combinatorial statements. We refer the reader to the survey papers 

[23] and [15] and the books [19] and [24] for more information. 

The inner models which are studied in the inner model program have the form 

L[/~], where E is a sequence of extenders which is subject to certain fine-structural 

conditions; we will refer to models of this standard type as "L[/~] models". It 

is anticipated that all large cardinal axioms below the level of supercompactness 

can hold in L[E]-models, but currently this has only been proved up to slightly 

beyond the level of a measurable limit of Woodin cardinals. 

Schimmerling and Zeman have shown that in any L[/~]-model, if there are 

no subcompact cardinals then [:]a holds for all ;~. From the discussion in the 

previous paragraph, this shows that [:]~ holds for every A is consistent with large 

cardinals up to slightly beyond a measurable limit of Woodin cardinals. It should 

eventually be possible to show that  [ ~  holds for every )~ is consistent with the 

existence of a 1-extendible cardinal by constructing a suitable L[/~]-model; in 

this section we will use forcing to prove this consistency result. Actually we 

prove something slightly stronger but more technical to state, which needs a 

preliminary definition. 

Definition 6.4: <Ca: c~ E ON, cf(c~) < c~) is a g lobal  D- sequence  iff 

(1) for every singular ordinal (~, Ca is club in c~ with or(Ca) < a, 

(2) if cf(a) < c~ and/~ E lim(Ca), then cf(/~) </~ and C~ = Ca n/~. 

Jensen proved that if V -- L there is a global square sequence, and that if 

a global square sequence exists then [ ~  holds for all ,¢. We can now state the 

result of this section precisely. 
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THEOREM 6.5: Let  GCH hold, let t~ be 1-extendible as witnessed by zr: H~+ ) 

HA+, and let 5 be inaccessible with 5 > A. Then in some generic extension there 

is a transitive set W and a predicate C on W such that (W, ¢, C) is a model  o f  

ZFC~+n is 1-extendible + C is a global square sequence. 

The rest of this section will be devoted to a proof of this theorem. Before 

starting the proof a few remarks are in order: 

(1) Doug Burke [3] showed that  the existence of a superstrong cardinal is 

consistent with [3~ holds for every A. 

(2) At first sight the most natural  procedure for showing that  a 1-extendible 

cardinal is consistent with global square would be to start  with a model 

with some large cardinal n, use class forcing to add a global square se- 

quence and then argue that  the resulting structure is a model of set theory 

in which ~ is 1-extendible. We were unable to make this scenario work 

without assuming some additional reflection properties for the class of or- 

dinals, which amounted to assuming that  the universe has the form V~ for 

inaccessible; we therefore decided to eliminate the complications of class 

forcing and build a transitive set model of our desired hypothesis by set 

forcing. 

(3) I t  is easy to see that  if ~ is 1-extendible then ~ is 1-extendible in A for every 

definable A, so that  there can be no [3~-sequence which is definable in H~+. 

While we are on the subject of definability we note that  in Theorem 6.5 

the sequence C is not definable in W, so our theorem leaves open whether 

a definable global square sequence is consistent with the existence of a 1- 

extendible cardinal. 

(4) Jensen showed that  if D~ holds for all ~ and a weak form of global square 

holds on singular cardinals, then global square holds. Zeman showed that  

the weak form of global square holds in all L[/~]-models. Combining these 

results with the Schimmerling-Zeman result, we see that  global square holds 

in L[/~] if L[/~] has no subcompact cardinals. See [22]. 

The following definition is not standard usage but is convenient here. 

Definition 6.6: Let ~ be an ordinal. A GS(~)-sequence is a sequence 

<C~: a < ~/, cf(a)  < a> where 

(1) for every singular ordinal a < *l, C~ is a club subset of a with ot(C~) < a,  

(2) if cf(a)  < ~ and/3 E lim(C~), then cf(/3) < /3  and C/~ = C~ N 3. 

Intuitively, a GS(~/)-sequence is a potential initial segment of a global square 

sequence. 
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We now state our large cardinal hypothesis, which will be in effect for the rest 

of this section: 

Hypothesis: GCH holds and there are regular cardinals t~ < ,k < 5 such that: 

(1) There exists j:  H~+ ~ H~+ such that crit(j) = n, j (n)  = A and j is 

elementary (that is to say j witnesses that n is 1-extendible). 

(2) 6 is inaccessible. 

Our plan for proving Theorem 6.5 is as follows: we will build a two-step generic 

extension V[G][g] such that 

(1) (~ is inaccessible in V[G][g]. 
(2) V V[G] = V y[a][g] (we denote this model by V~[G] below). 

(3) V~[G] ~ "t~ is 1-extendible". 

(4) In V[G][g] there is a sequence C = (Ca: a < (~, cf(a) < a) such that 

(a) ot(Ca) < a, and V~ E lim(Ca) CZ = Ca N/3, 
(b) (Va[G], e, C) is a model of ZFC c.  

Before giving the details of the construction we discuss a couple of distinctive 

features. We note that very similar issues arise (and are discussed in more detail) 

in a paper by Cummings, D~amonja and Shelah [4]. 

The construction is a "Reverse Easton" iteration of the same general type 

as those discussed in Baumgartner's survey [2]. It is common in Reverse Easton 

iterations for the forcing being done at stage 7 to be 7-closed, but in our situation 
we will only assume that  it is < y-strategically closed. We recall the definition 

of strategic closure. 

Del~nition 6.7 (Foreman [9]): Let 3' be a cardinal. A poset P is < 7-strategically 

closed if and only if for every ordinal ~ < 7 player II wins the following two-player 

game of perfect information. Players I and II collaborate to build a decreasing 

chain (Pa: 0 < ¢) in P with player I playing at odd a and player II at even a 

(including all limit stages). Player II wins if play proceeds for ff many moves, 

that is to say Pa is defined for all a < ¢. 

Replacing closure by strategic closure necessitates a few changes in the stan- 

dard Reverse Easton arguments. We outline these changes at the relevant points 

below. 

In our iteration, at each regular 7 we will force with a poset Q~ which adds 

a GS(7)-sequence by approximation via initial segments. A potential problem 

with this strategy is that a priori there may not be enough conditions in Q~, 

in fact what we need (see Claim 6.11 for the details) is that GS(c~)-sequences 

already exist for all ordinals c~ < 7; we will arrange this using the fact that 
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we already forced with Q ,  for all regular # < 7 and the following sequence of 

technical lemmas. 

LEMMA 6.8: Let u be an infinite cardinal. I f  there exists a GS(u)-sequence, then 

there exists a GS(rl)-sequence for every ~ < u +. 

Prook Let (Ca: c~ < u, cf(cQ < a)  be a GS(u)-sequence. We prove the existence 

of a GS(~ + 1)-sequence by induction on limit r / in the interval [u, u+). 

CASE 1: ?] = u. If  u is regular there is nothing to do, so we assume tha t  u 

is singular. Choose (u~: i < cf(u)) increasing, continuous and cofinal in u with 

u0 = 0 and cf(u) < Ul. Define for singular ordinals c~ < u 

{ui: i < j }  c~ = uj, j limit, 
D~ = {ui: i < cf(u)} c~ = u, 

Ca \(u~ + 1) u~ < a < ui+l. 

CASE 2: 7/ = 7+CO, 7 limit. Let (D~: a _< 7, of(a) < a)  be a GS(7+l ) - sequence .  

We may  extend this to be a GS(rl+ 1)-sequence by defining D v = { 7 + n :  n < co}. 

CASE 3: u < ~ < u +, ~ a limit of limit ordinals. Let cf(~) = p, where neces- 

sarily g _< u. Choose (zli: i < p) increasing, continuous and cofinal in q, in such 

a way tha t  

(1) zl0 = 0, 

(2) r/i+1 is a singular limit ordinal for all i, 

(3) /]1 > //. 

Fix (C/+1: c~ _< ~i+l,cf(c~) < cu) a GS(~i+I  + 1)-sequence for each i < #. 

Define for singular ordinals a _< r I 

{r/i: i < j}  c~ = yj,  j limit, 

D~ = {~?~: i < #} ~ = 71, 
~ 1  \(?~i _1_ 1) Vi < O~ ~ 7]i+1. II 

LEMMA 6.9: / f u  is a singular cardinal and there is a GS(p)-sequence for every 

regular # < u, then there is a GS(u)-sequence. 

Proof: Like Case 3 in Lemma 6.8. | 

LEMMA 6.10: Let 7 be a cardinal and suppose that for every regular cardinal 

# < 7 there is a GS(p)-sequence. Then for every ordinal a < 7 there is a 

G S ( a )-sequence. 

Proof." If  7 is a limit cardinal then there are unboundedly many  regular cardinals 

less than  7, and the result is clear. So suppose 3 '  #+ for some cardinal p. If  
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# is regular then there is a GS(p)-sequence by assumption, if # is singular then 

there is a GS(p)-sequence by Lemma 6.9. In either case, by Lemma 6.8 there is 

a GS(a)-sequence for every a < #+ = 7. | 

We can now describe our iterated forcing construction. Given a regular cardinal 

7 we define a poset Q~. p c Q~ if and only i fp  = (Ca: cf(a) < a , a  _</3) where 

(1) /3 is a singular limit ordinal less than 7, 

(2) p is a GS(/3 + 1)-sequence. 

If p = (Ca: cf(a) < a , a  _</3) and q = (Da: cf(a) < a , a  _</3") are in Q~, 

then p _< q iff/3 >_ ~* and Ca = Da for all a _< fl*. We note that by GCH, Q~ is 

a poset of size at most 7, and so trivially has the -y+-ehain condition. 

CLAIM 6.11: If there is a GS(a)-sequence for every a < 7 then forcing with Q~ 

adds a GS(7)-sequence. 

Proof: We need to check that for every ~ < 7 the set of GS(¢ + 1)-sequences 

is dense. Let p = (Ca: c f ( a ) < a , a < / 3 )  be a GS(/3+ 1) sequence for some 

singular ordinal /3, and let ¢ be a singular ordinal with /3 < ¢ < 7. Let q = 

(Da: cf(c~) < c~, (~ <_ ¢) be a GS(¢ + 1)-sequence. 

We define Ea for singular a with a < ~ by letting Ea = Ca for a _< /3 

and Ea = D a \ ( / 3 + l )  for /3 < ¢ _< ¢. It is routine to check that if r = 

(Ea: cf(a) < a, a _< i)  then r is a GS(¢ + 1)-sequence extending p. | 

We define F5+1 to be the Reverse Easton iteration of Q7 for regular 7 -< (L 

To be a little more explicit we define sequences (Fa: a < 5 + 1) and (Qa: a < ~) 

inductively by 

(1) Qa is a ]Pa-name for the version of Qa computed by V P~, if c~ is regular 

in V ~ (which will turn out to be the case for every regular a, see Claim 

6.12). Otherwise Qa names the trivial forcing. 

(2) = * Q a .  

(3) For A _< ~ a limit ordinal, F~ is the direct limit of (Pa: a < A) for A inac- 

cessible, and the inverse limit otherwise. 

CLAIM 6.12: Let 7 be regular. Then in Ve*: 

1~. For every condition p C Q~ and every ~ < 7 there is a condition q C Q~ 

with q <_ p and max(dora(q)) _> ¢. 

2~. Q~ is < v-strategically closed. 

3~. Cardinals and cofinalities are preserved. 

Proo£" We proceed by induction. Assume that we have 15, 25 and 35 for regular 



Vol. 131, 2002 INDEXED SQUARES 95 

5 < 7. We start  by outlining the argument that  P~ preserves all cardinals and 

cofinalities. 

Given a cardinal # < 7, we factor P~ in the standard way as P~ * Qp * ]R and 

note that  p+ is the first point at which the iteration ]R does non-trivial forcing. 

The arguments of [2], suitably adapted for strategically closed forcing, give us 

that  N is < #+-strategically closed in V~, +1. The usual counting arguments give 

us that  P~+I is always #+-c.c. A suitable adaptat ion of Easton's  arguments from 

[8] shows that  all/t-sequences from V ~ must lie in V ~.+1 , and arguments exactly 

like those of [8] then show that  all cardinals and cofinalities are preserved in V ~ .  

It  follows by the induction hypothesis and Claim 6.11 that  in V ~ we will have 

a GS(5)-sequence for every regular 5 with 5 < 7- By Lemlna 6.10 there is a 

GS(c~)-sequence for every ordinal a < 7- By Lemma 6.11 again 1~ holds in V~% 

Recall the strategic closure game from Definition 6.7. We describe a winning 

strategy for player Even in the game of length (~ + 1 played on Q~, where (~ < 7 

is a limit ordinal. Let pz = (E¢: cf(~) < ¢, ¢ <_ 7Z> be the condition which is 

played at stage/3, where player Even's strategy will guarantee that  (7~:/3 -< @ 

is continuous. 

CASE 1. /3 = 2: Even plays a condition P2 __% Pl with 72 > (~. Notice that  for 

all limit/3 < ~ we will have cf(7~) = cf(/3) _< c~ < 72 < 7~. 

CASE 2. /3 : fl0 4- 2, /30 > 0 EVEN: Even sets 7~ = 7~o+1 + w and E ~  = 

{7~o+1 Jr- rt: / /  < W}. 

CASE 3. lira(/3): Even sets 7Z -- sup~<z 7~ and E ~  = {7~:/3 </3}- This is a 

legal move because 

(1) i f¢  E lim(E~,) then ¢ --- 7~ for/3 limit, and so 

(2) o t ( E ~ )  = /3  <_ a < 72 < 7~. 

It  is routine to check that  this is a winning strategy, concluding the proof of 

Claim 6.12. | 

We will choose G to be some Pa-generic filter subject to a certain technical 

condition; if C~ and C~ are the sequences added at stages n and A, then we 

choose G so that  C ~ [ t~ = C ~. This is possible because ~ is regular in V[G~,], so 

that  C~ can be extended 2 to a condition M in Q~ and we may force below M to 

get Ca as desired. 

2 Define M to agree with C~ up to tq to have t~ + w as the largest point in its 
domain and to associate {n + n: n < w} to n + cv. 
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The reason for doing this is explained in detail in Claim 6.15 below; in the 

jargon of large cardinal theorists M is a "master condition" in Q~, which is to 

say that forcing below M at stage A will guarantee that we can lift our original 

embedding j to an elementary embedding j:  H~+ [G~ * g~] ---+ HA+ [G~ * g~]. 

For more about master conditions see the section on Reverse Easton forcing in 

Baumgartner's survey paper [2]. 

By Lemma 6.12, V[G][g] has the same cardinals and cofinalities as V and 5 is 

inaccessible in V[G][g]. This implies that every set of rank less than 5 is coded 

by a bounded subset of 5, so V VIal = vv[G][g]; to save the reader from a plague 

of superscripts we denote this set by Vb[G] in what follows. 

Let C be the generic GS(5)-sequence added by g. The structure (V~[G], 6, C) 

is a model of 7FC d because V[G][g] is a model of ZFC, 5 is inaccessible in V[G][g] 
and C 6 Y[G][g]. 

To finish, we show that in V~,[G] there is an elementary embedding from H y~[v] 
to Hv~ Iv]. It will then follow that ~; is 1-extendible in V~[G]. The elements 

of H~+ are coded by subsets of t¢ and no subsets of t¢ are added past stage 

of the iteration, so Hv~ [G] -- H V[G~+~] = //V~[G~+~]. Similarly we see that 
Hv~_[G] = HV[+G~+~] ~V~[G~+~] 

---- . ~ A +  

Hv~[G~+~] The intuition behind the rest of the proof is that we want to treat .+ 

as a generic extension of H.+ by P~+I, and then apply the techniques of Reverse 

Easton forcing to lift the embedding j .  The argument requires a little care 

because H.+ is not a model of ZFC. 

Since IP~+I I = to, every element of H V~[G~+l] has the form/-G~+~ for some P .+l -  

name /" 6 H.+.  What is more F~+I E H~+. A tedious but routine argument 

now shows that for any formula ¢ there exists a formula ¢* such that for any 

?~+l-name/-  and condition p 6 ?.+1 

,,HV~[G-+I] ),, p I~-v +~ .+ ~ ¢(~G~+~ ¢==~ H~+ ~ ¢* (p, ~:Dg+l , ~-). 

r_r+ 
Abusing notation slightly we write p IF-~;+l ¢(~-) for this relation, where the key 

point is that the relation is definable in H~+. An exactly similar analysis works 

for H v~[a~]~+ and we write p IF -H+ ¢(/-) as an abbreviation for the indigestible p lt-v 

"HV~_ [G~] ~ ¢(÷G,)". In line with our intuitive remarks above we further abuse 

notation and write H~+ [G~] for ,,+~Y~[a~], H~+[G~+I] for H yd°"+`]~+ , H~+[G~] for 

~qv~[c~] and H~+[G~+I] for ,,~+ **A+ 

As usual, the problem is to lift the embedding j .  We break up G~+I 

as G~ * g~ • H • g~, where g~ is the generic object added at to, H the generic 
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object added between n and A, and g~ the generic object added at A. 

GA = G~ • g~ • H will be the generic object for PA. 

CLAIM 6.13: j"G~ C_ G~. 

Here 

Proof: Let p • G~; then since we did a Reverse Easton iteration we know that  

the support  of p is some ordinal (~ with a < ~. Now crit(j)  = g, so the support  

of j(p) is also ~ and p [ a = j(p) [ c~. So clearly we have j(p) • G~ *g~* H = G~, 

as desired. II 

We now a t t empt  to extend the embedding j to the larger domain H,~+ [G~] by 

defining j(/_c~) = j(/_)v~ for all ~ • H~+. 

CLAIM 6.14: This definition gives a well-defined elementary embedding 

j :  H~+ [G~] ~ HA+ [GA] which extends our original map j: H~+ ---+ HA+. 

Proof: Suppose that  /.a~ = dc~. By the t ruth lemma there is p E G .  such 

that  p lbH~ + /- = &. This is a first-order s tatement  in H~+ and so, since j is 

elementary, j(p)I~-H~ + j(/-) = j(&). j(p) • G~ and so j(?)G~ = j(&)c~. 

The proofs that  the map we have defined is elementary and extends the original 

map are very similar. | 

CLAIM 6.15: j"g~ C_ gA. 

Proof: Let p C g~. Then p is in an initial segment of C~, and j(p) = p. Since 

we chose ~A to extend C ~, j (p)  C gA. | 

By the same method as in Claim 6.14 we may further extend j to get an 

elementary embedding j:  H~+ [G~ * g~] ~ H~+ [GA * g~]. Since H~+ [G~ * g~] -- 

H 7~[G]~+ and HA+ [G~*g~] = Hv~ [G], we have shown that  ~ is 1-extendible in V~[G]. 

This concludes the proof of Theorem 6.5. 
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